

Importance of Sampling Frequency in Reducing Uncertainty

Louise Barton¹, Benjamin Wolf², David Rowlings³, Clemen Grace³, Katia Stefanova¹, and Klaus Butterbach-Bahl^{2,4}

¹The University of Western Australia ²Institute for Meteorology and Climate Research, Germany ³Queensland University of Technology, Australia ⁴International Livestock Research Institute, Kenya

6

ACKNOWLEDGEMENTS

Presenter's travel costs were funded by OECD-Cooperative Research Program.

The various research projects have funded by the

- Australian Government's Climate Change Research Program,
- Australian Research Council (DP0559791)
- Department of Agriculture & Food Western Australia.
- Grains & Research Development Corporation
- German Science Foundation

Australian Government

Irrigated cropping, subtropical climate, Australia

Source: Scheer et. al. 2013. Nutrient Cycling in Agroecosystems **95**: 43–56.

Rain-fed cropping, Wongan Hills, south-western Australia

Investigate the effect of sample frequency on estimates of **annual** N_2O fluxes by using data collected:

- On a sub-daily basis using automated chamber systems
- From a variety of climates and land-uses

Tropical

TWENTY EIGHT DATASETS: RANGE IN ANNUAL FLUXES

LOCATION	DATASETS (Yrs,Treat)	CLIMATE	LANDUSE	ANNUAL N ₂ O FLUX (kg N ha ⁻¹)
Bellenden Kerr, Australia	One (1, 1)	Tropical	Forest	1.16
Cunderdin, Australia	Eight (4, 2)	Semi-arid	Cereal cropping	0.08-0.16
Höglwald, Germany	Two (1, 1)	Temperate	Plantation forest	0.58-2.46
Kingsthorpe, Australia	Three (1, 3)	Sub-tropical	Irrigated cereal-cotton cropping	2.61–2.93
Mooloolah Valley, Australia	Five (3, 2)	Sub-tropical	Forest, Pasture, Orchard	0.48-8.12
Wongan Hills, Australia	Eight (2, 4)	Semi-arid	Cereal cropping	0.03-0.07
Xilin, Inner Mongolia	One (1)	Semi-arid	Steppe grassland	0.21

LOCATION	DATASETS (Yrs,Treat)	CLIMATE	LANDUSE	ANNUAL N ₂ O FLUX (kg N ha ⁻¹)	DAILY FLUX CV (%)	EPISODICITY
Bellenden Kerr, Australia	One (1, 1)	Tropical	Forest	1.16	98	Moderate
Cunderdin, Australia	Eight (4, 2)	Semi-arid	Cereal cropping	0.08-0.16	173–428	High to Extreme
Höglwald, Germany	Two (1, 1)	Temperate	Plantation forest	0.58-2.46	169–179	High
Kingsthorpe, Australia	Three (1, 3)	Sub-tropical	Irrigated cereal-cotton cropping	2.61–2.93	181–235	High to Extreme
Mooloolah Valley, Australia	Five (3, 2)	Sub-tropical	Forest, Pasture, Orchard	0.48-8.12	78–172	Moderate to High
Wongan Hills, Australia	Eight (2, 4)	Semi-arid	Cereal cropping	0.03-0.07	380-913	Extreme
Xilin, Inner Mongolia	One (1)	Semi-arid	Steppe grassland	0.21	260	Extreme

CV, coefficient of variation

For each data set, we calculated:

Daily fluxes by averaging sub-daily fluxes (removed diurnal variation)

Annual fluxes calculated for different sampling frequencies (5 intervals) using 'Jack-Knife' analysis

Frequency (day)	Permutations	Example
Daily (0)	1	All sample days
3-days/week (2)	7	Sun-Tue-Thu; Mon-Wed-Fri; Tue-Thu-Sat etc
Weekly (7)	7	Sun, Mon, Tue, Wed, Thu, Fri, Sat
Every 2 nd week (14)	14	Sun (Week 1, 2), Mon (Week 1, 2) <i>etc</i>
Every 4 th week (28)	28	Sun (Weeks 1–4), Mon (Week 1–4) <i>etc</i>

For each sampling frequency, annual flux compared with 'best' estimate (daily) Result expressed as % of 'daily' annual flux

Cropping, semi-arid climate, Australia

Source: Barton *et. al.* 2013. *Agriculture, Ecosystems and Environment* **167**: 23–32.

Cropping, semi-arid climate, Australia

Sampling interval (days)

	0 (Daily)	2	7	14	28
% Best estimate	100	61–141	21–251	10-464	3–893
Annual Flux (kg N ha ⁻¹)	0.05–0.06	0.03-0.08	0.01-0.14	0.01-0.5	0-0.5

Plantation forest, temperate climate, Germany

Source: Butterbach-Bahl et. al. 2002. Plant and Soil **240**: 117–123.

	0 (Daily)	2	7	14	28
% Best estimate	100	97–105	88-118	78–120	60-156
Annual Flux (kg N ha ⁻¹)	2.46	2.40-2.58	2.16-2.90	1.93-2.97	1.49-3.85

Rainforest, tropical climate, Australia

Source: Kiese et. al. 2003. Global Biogeochemical Cycles 17: 1043

Sampling interval (days)

	0 (Daily)	2	7	14	28
% Best estimate	100	100-102	98–103	72–107	57–123
Annual Flux (kg N ha ⁻¹)	1.2	1.1–1.2	1.1–1.2	0.8-1.2	0.7-1.4

Source: Barton *et. al.* 2015. *Sci. Rep.* 5:15912 | DOI: 10.1038/srep15912

Source: Barton *et. al.* 2015. *Sci. Rep.* 5:15912 | DOI: 10.1038/srep15912

OTHER STUDIES

Corn-soybean, Iowa, USA "At relatively frequent sampling intensities (i.e., **once every 3d**) N₂O–N flux estimates were within **±10%** of the expected value"

Parkin (2008)

Cotton, Shanxi Province, China

"Sampling daily (at 9am) to **every two days** caused a deviation of up to **7.3%** from annual flux estimated from sub-daily measurements."

Lui et al. (2010)

Pasture, Otago, New Zealand

"... gas samples collected **three times a week** between 10:00-12:00h provided **zero bias** in calculating cumulative emissions when compared with those based on frequent, 2-hourly, flux measurements."

Van der Weeden et al. 2013

Sugar Cane, Queensland, Australia

"Weekly sampling with biweekly sampling for one week after >20 mm of rainfall was the recommended sampling regime. It resulted in no extreme (>20%) deviations from the 'actuals', had a high probability of estimating the annual cumulative emissions within **10% precision** ..."

Reeves et al. (2016)

RECOMMENDED SAMPLING STRATEGY:

'Jackknife' and 'Informed'

LOCATION	DATASETS (Yrs,Treat)	CLIMATE	LANDUSE	ANNUAL N ₂ O FLUX (kg N ha ⁻¹)	EPISODICITY	JACKNIFE (sampling days)	INFORMED (sampling days)
Bellenden Kerr, Australia	One (1, 1)	Tropical	Forest	1.16	Moderate	52	156
Mooloolah Valley, Australia	Five (3, 2)	Sub-tropical	Forest, Pasture, Orchard	0.48-8.12	Moderate to High	156–365	Not determined
Höglwald, Germany	Two (1, 1)	Temperate	Plantation forest	0.58–2.46	High	156	83
Xilin, Inner Mongolia	One (1)	Semi-arid	Steppe grassland	0.21	Extreme	156	Not determined
Cunderdin, Australia	Eight (4, 2)	Semi-arid	Cereal cropping	0.08-0.16	High to Extreme	156–365	Not determined
Kingsthorpe, Australia	Three (1, 3)	Sub-tropical	Irrigated cereal- cotton cropping	2.61–2.93	High to Extreme	365	Not determined
Wongan Hills, Australia	Eight (2, 4)	Semi-arid	Cereal cropping	0.03-0.07	Extreme	365	60

- Nitrous oxide emissions <u>generally</u> need to be measured daily to accurately estimate (within 10%) <u>annual fluxes</u> in a variety of land-uses and climates
 - 71% of data sets = daily measurements
 - 25% of data sets = 3 daily measurements per week
- For study sites where temporal variability has not previously been characterised (or when variability is expected to change from year-to-year) recommend <u>daily sampling</u> with manual chambers
- ☑ Recommended sampling frequency increases with increasing "episodicity"
- ❑ Data from automated chambers should be continuously used to develop guidelines for manual chamber sampling frequency

Cropping, semi-arid climate, Australia

Relationship between coefficient of variation of the daily N_2O flux and the deviation (range) from the 'best estimate' annual N_2O flux: 4-weekly sampling interval

Daily N₂O flux coefficient of variation (%)