

Global budgets of nitrous oxide under GCP/INI, the contribution of the global N₂O intercomparison project (NMIP), and refinements to regionally assess diverse drivers, fluxes, and impacts (RECCAP-2)

Wilfried Winiwarter, Pep Canadell, Rona Thompson, Hanqin Tian

> Climate change, reactive nitrogen, food security and sustainable agriculture Garmisch-Partenkirchen, April 15-16, 2019

Overview

- The Global Carbon Project and N₂O
- The global N₂O intercomparison project (NMIP)
- Regional refinements (RECCAP-2)

The Global Carbon Project

GCP-INI Global N₂O budget

Top-down assessment tmospheric observations & modeling ead: R. Thompson; Michael Prather) Terrestrial biosphere modeling Emissions from agricultural and natural soils (Lead: Hanqin Tian)

Inventory-based estimates Emissions from agriculture, industry, waste, and fuel & biomass combustion (Lead: Greet Maenhout)

Inland water system models and observations Emissions from rivers, reservoirs, and lakes (Lead: Pete Raymond & Pierre Regnier)

Ocean biogeochemistry models and observations Fluxes in the coastal and open ocean (Lead: Pierre Regnier, Parv Suntharalingam)

Integration and Uncertainty (Lead: H. Tian and R. Thompson)

Inverse modelling

(slides by Rona Thompson)

Atmospheric observations

N₂O budget

- Global source 17.0 TgN y⁻¹
- Global sink 12.3 TgN y⁻¹
- Global source increased by 1.6 TgN y⁻¹ from 2000-2005 to 2010-2015
- 90% of the increase due to emissions from land
- Change in atmospheric abundance increased by 1.3 TgN y⁻¹ from 2000-2005 to 2010-2015

Estimation of Emission Factors (EF)

- Regressions N₂O (corrected for non-soil emissions) versus N-input
- Global EF = 2.5 \pm 0.6%, China EF = 2.2 \pm 0.4% (1.5 \pm 0.4%), and Brazil EF = 2.7 \pm 0.7%

Non-linear response of N₂O?

- Based on 78 field studies
 Shcherbak et al. find quadratic relationship for N₂O response
- Response may be non-linear with high N-fertilizer rates since:
 - 1. more N-substrate available for nitrification/denitrification
 - higher yield of N₂O from denitrification when NO₃⁻ concentration is high
 - higher N₂O emission when Navailability to microorganisms greater than C-availability

Shcherbak et al., PNAS, 2014 Thompson, AGU Fall Meeting, 2018

Reality versus RCP scenarios

- Mean of 3 inversions show faster rate of emission increase after 2009 than "business as usual" scenario
- Globally, emissions appear to follow quadratic relationship to N-input

NMIP

(slides by Hanqin Tian)

NMIP - Global and regional N₂O model **Inter-comparison Project-Framework**

Model input data

- Climate (Temperature, precipitation, radiation)
- CO₂ concentration
- N deposition ٠
- N fertilizer use
- Manure N use
- Irrigation ٠
- Land cover and land use ٠
- Soil texture
- topography (elevation, ٠ slope, aspect, etc.)

Model calibration & evaluation

- Field observations
- Statistical extrapolation ٠
- Inversion models ٠

Mitrate assimilation

Objective 1

Unravel the major controlling processes of N₂O fluxes and the uncertainties from model structure and parameters **Objective 2** Quantify spatial and

temporal patterns of global/regional N2O fluxes, and attribute the relative contributions of multiple environmental factors

Objective 3

Provide a bench-marking estimate of global and regional N2O budgets through synthesizing multisource data

NMIP benchmarks for model performance and data evaluation

Tian et al., 2018 BAMS

Participating models

Model	Contact	Affiliation	Citation
CLM-CN	Eri Saikawa	Emory University, USA	Saikawa et al. (2013)
DLEM	Hanqin Tian	Auburn University	Tian et al. (2015) Xu et al. (2017)
LM3V-N	Stefan Gerber	University of Florida	Huang and Gerber (2015)
LPX	Sebastian Lienert	University of Bern	Kelly et al. (2014)
LPJ-GUESS	Stefan Olin/ Almut Arneth	Lund University, Sweden/KIM, Dept. Atmospheric Environmental Research, Germany	Olin et al. (2015); Xu-Ri and Prentice (2008)
O-CN	Sönke Zaehle	Max Planck Institute for Biogeochemistry	Zaehle et al. (2011)
ORCHIDEE	Nicolas Vuichard	IPSL – LSCE, France	Vuichard et al. (in prep)
ORCHIDEE- CNP	Jinfeng Chang/ Daniel Goll	IPSL – LSCE, France	Goll et al., 2017
TRIPLEX-GHG	Changhui Peng	University of Quebec at Montreal, Canada	Zhu et al. (2014); Zhang et al. (2017)
VISIT	Akihiko Ito	National Institute for Environmental Studies, Japan	Inatomi et al. (2010); Ito and Inatomi (2012)

Gridded (0.5°×0.5°), annual N fertilizer use, Manure N use and Manure N deposition in grassland from 1860 to 2015

Tian et al. (2018) BAMS

The NMIP Project - global results

In the preindustrial era, N_2Q emissions along a latitudinal gradient (Figure 2a) showed a single peak in the tropics (23.5 $^{\circ}N - 23.5 \,^{\circ}S$ in this study), which contributed 69% to the global total soil N₂O emissions. In the recent decade, N₂O emissions displays two peaks, one in the tropics and the other in the temperate region of the Northern Hemisphere (Figure 2b).

The model-ensemble mean showed that the most significant increases occurred in the mid-latitudes of the Northern Hemisphere. (Figure 2c) Tian et al., 2018 GCB

The NMIP Project - regional results

The NMIP Project-biome-level results

Global cropland soil N₂O emissions increased by 3.0 ± 1.1 Tg N₂O-N yr⁻¹ (~11 times) from the pre-industrial period to the recent decade, contributing the majority (82%) to the increased global soil N₂O emissions.

The NMIP Project-factorial contributions

Manure and N fertilizer addition (MANN and NFER), N deposition (NDEP) and climate change (CLIM) were found to increase soil N_2O emissions. Rising CO_2 concentration reduced global soil N_2O emissions with its effect increasing through time.

Model ensemble results showed that LCC (land cover change) effects on emissions were close to neutral (-0.0 \pm 0.5 Tg N₂O-N yr⁻¹ in the recent decade).

Tian et al., 2018 GCB

Remaining challenges for GCP/INI global N₂O budget

Three different approaches Inversion – land surface modelling – inventories

- Different purposes, nomenclatures and system boundaries
- Agreements most easily on trends

N₂O source attribution table

IPCC AR5	Inventory approach (GAINS)	Land surface modelling	
	Energy - conversion		
	Energy - industry		
	Energy - transport		
Fossil fuel combustion and	Energy - domestic		
industrial processes	Nitric acid plants		
	Adipic acid plants		
	Caprolactam plants		
	N2O use		
	Manure management		
	Soil: Inorganic fertilizer and crop residues	grassland and arable land	
	Soil: organic fertilizer		
	Grazing	pasture	
Agriculture	Indirect - Atmos.Depo	emissions appear in grassland, pasture, forests, natural vegetation	
	Indirect - leaching	emissions appear in lakes, rivers, sea shelves	
	Histosols	emissions appear in grassland and arable land	
	Composting		
Human excreta	Wastewater		
Biomass and biofuel burning	Included when used as energy source. Not covered: forest/savannah burning		
Atmospheric deposition on land	"indirect" only cover agricultural N	emissions appear in grassland, pasture, forests, natural vegetation	
Atmospheric deposition on ocean	"indirect" only cover agricultural N	emissions appear in oceans	
Surface sink			
Rivers, estuaries, coastal zones	"indirect" only cover agricultural N	emissions appear in lakes, rivers, sea shelves	
Soils under natural vegetation		natural vegetation	
Oceans		oceans	
Lightning			
Atmospheric chemistry			

Upcoming: RECCAP-2 (slides by Pep Canadell)

REgional Carbon Cycle Assessment and Processes (RECCAP)

Gotemba, Japan 18-21 March 2019

REgional Carbon Cycle Assessment and Processes-2

- to quantify anthropogenic greenhouse gas emissions,
- to develop robust observation-based estimates of changes in carbon storage and greenhouse gas emissions and sinks by the oceans and terrestrial ecosystems,
- to gain science-based evidence of the response of marine and terrestrial regional GHG budgets to climate change and direct anthropogenic drivers.

Future Component

Chris Jones, Roland Séférian ppt presentation

The 3-GHG Budgets

Trends Variability Processes

L9

L10

- L3 L4
- L5
- North America Russia

- Southeast Asia
 - South Asia
 - Western Asia

Timetable RECCAP2 (2019-2022)

Paris Agreement Global Stocktake

Synthesis of Syntheses & Global Stocktake

More information:

http://www.globalcarbonproject.org/

