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Extended Abstract 
 
Nitrogen (N) fertilizer additions are typically necessary to maintain high crop yields but are also 
largely responsible for agricultural soils being the primary source of anthropogenic nitrous oxide 
(N2O) emissions [1]. N2O is a greenhouse gas with approximately 265-298 times the global 
warming. potential of CO2 on a per mole basis [2]. N2O is also the primary anthropogenic 
stratospheric ozone-depleting substance after the phaseout of halocarbons [3]. Extensive research 
shows that different management practices such as N fertilizer type and amount, tillage intensity, 
and crop rotation have various effects on N2O emissions, nutrient losses, soil carbon stock changes 
and crop yields. As interest in mitigating the negative environmental impacts of crop and livestock 
productions systems increases, it is important to better quantify how environmental factors interact 
with management decisions to control agronomic and environmental outcomes. 

Models of varying complexity have been developed to represent processes such as 
denitrification that transform N and contribute to N2O emissions. The DayCent ecosystem model 
is of intermediate complexity and simulates the complete plant soil system. DayCent represents 
common management strategies including fertilizer amendments, irrigation, tillage, crop rotation, 
residue management, etc. and has been widely used to estimate N2O emissions under conventional 
and alternative management scenarios. Major model applications include generating N2O and 
carbon (C) stock change estimates for agricultural soils reported in the USA national greenhouse 
gas inventory [4] and investigating how land use and climate change impact agronomic and 
environmental outcomes [5].  In this paper, we focus on how processes responsible for N2O 
emissions are represented in DayCent, compare model outputs with field observations, and 
describe recent improvements in model algorithms. 

The DayCent (daily CENTURY) ecosystem model simulates vegetation growth and soil 
processes that control changes in carbon stocks and N flows. The model uses a daily time step and 
the major inputs include weather (daily maximum and minimum air temperature, daily 
precipitation) soil properties (texture, soil pH, bulk density field capacity, wilting point, and 
hydrologic properties) and land use/management (vegetation type, site history, fertilizer amounts, 
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tillage intensity, planting and harvesting schedules, etc.).   
Major submodels include: plant production, soil water, soil temperature, and organic matter 

cycling, nitrification, denitrification, methane oxidation in upland soils, and methanogenesis in 
flooded systems. Flows of C and nutrients are controlled by the amount of C in the various pools, 
the nutrient concentrations of the pools, abiotic temperature and soil water factors, and soil 
physical properties related to texture. Plant production is a function of nutrient availability, soil 
water and temperature, shading, vegetation type, and plant phenology [6].  Decomposition of soil 
organic matter (SOM) and external nutrient additions supply the nutrient pool, which is available 
for plant growth and microbial processes that result in trace gas fluxes. The N gas submodel of 
DayCent simulates soil N2O and nitrogen mono/dioxide (NOx) gas emissions from nitrification 
and denitrification and N2 emissions from denitrification. N gas flux from nitrification is assumed 
to be a function of soil ammonium concentration and mineralization rates, water content, 
temperature, and pH [7]. Maximum nitrification rates occur at close to 50% water filled pore space 
(WFPS) and are assumed to decreases as temperature and pH decrease. Denitrification is a function 
of soil nitrate (electron acceptor) concentration, labile C (electron donor) availability, WFPS, and 
soil physical properties related to texture that influence gas diffusivity [7]. 

The DayCent model was tested with soil N2O emission observations using ground-
based chambers from long term winter wheat trials in southern Queensland, Australia. Using 
default parameters, the model represented the seasonal timing of emission pulses well, but 
over-estimated compared with observations (Fig. 1). The reason for over-estimating is related 
to how the model infers soil oxygen (O2) status based on texture. Specifically, the model 
assumes that high clay soils have small pores, so air exchange is inhibited, and a substantial 
portion of the soil volume can become anaerobic even at moderate water contents. The soil at 
this site is a Vertisol (cracking clay) containing 65% clay and the model simulated substantial 
denitrification rates. However, the prominent cracking and shrink/swelling of this soil facilitate 
air exchange but these impacts are not represented in the model. Consequently, the function 
controlling how soil water content and texture interact to limit dentification rates had to be 
adjusted so that denitrification was greatly reduced and favorable comparisons with 
observations were obtained (Figure 1). This suggests that accounting for additional factors 
beyond texture that influence soil O2 status (e.g., cracking, aggregation) are necessary to 
improve general model performance. 

 
Figure 1. DayCent (calibrated and non-calibrated) simulated and observed nitrous oxide (N2O) 
emissions for wheat in Queensland, Australia fertilized with 90 kg N ha -1.    
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DayCent was also tested with N2O emission observations using flux towers in Eastern and 
Western Canada. At these sites, we concentrated on pulses associated with spring season melting 
of soil water and snow which can make up a large portion of total annual emissions [8]. The 
standard version of the model greatly under-estimated these pulses which are thought to result 
mainly from denitrification which is enhanced due to the sudden availability of substrates and 
freeze thaw impacts on soil O2 status. To account for this, we relaxed both labile carbon and WFPS 
constraints on denitrification after the top layer of soil melted for up to 10 days depending on the 
number of accumulated freezing degree days. The freeze/thaw enhancement was recently 
evaluated at the regional scale for the US Great Plains and corn/soy belt by comparing DayCent 
generated emissions with those from a Lagrangian regional inversion [9]. The freeze/thaw 
enhanced version matched the inversion results more closely than the standard DayCent version 
and a manuscript is currently in preparation.  

Lastly, DayCent was tested on control and basalt-treated plots cropped with corn and 
miscanthus in Illinois, USA. In addition to mitigating soil acidity, basalt also provides nutrients. 
Contrary to observations, DayCent showed higher N2O emissions with basalt addition because of 
accelerated rates of nitrification associated with increases in pH. However, recent and established 
literature provide evidence of lower N2O emissions with increases in pH [1,10,11], due to a direct 
inhibition of the denitrifier metabolism and to accelerated rates of N2O reductase that promote 
complete denitrification. Therefore, we modified the model to include the impact of changes in 
pH on the denitrification subroutine as well. Specifically, we adapted pH equations from [12] that 
adjust both gross denitrification rates and the N2:N2O ratio which led to improved results (Fig. 2). 

 
Figure 2. Observed vs. DayCent simulated nitrous oxide (N2O) emissions for an Illinois, USA 
soil without (a) and with (b) pH impacts on denitrification rate and the N 2/N2O ratio. 
 

We conclude that DayCent could be improved by accounting for how soil volume 
changes in response to wetting and freeze/thaw dynamics which affect soil O2 status and 
denitrification rates. Including the impacts of pH on denitrification metabolism also improved 
model performance. In sum, a more complete implementation of the current understanding of 
process controls should improve model performance, although increased complexity does not 
always imply better results and thus it is crucial to compare model outputs with high quality 
field observations.  
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